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Abstract— Pediatric obstructive sleep apnea (OSA) is a 
common respiratory disorder that has been associated with 
increased cardiovascular risk. The standard diagnosis is 
polysomnography, but its complexity, cost, and inconvenience 
lead to underdiagnosis. To address this situation, we propose for 
the first time a simplified alternative using the overnight 
electrocardiogram (ECG) and a hybrid model based on a 
convolutional neural network and a transformer network to 
estimate the severity of pediatric OSA. In addition, the 
Gradient-weighted Class Activation Mapping (GradCAM) 
method is proposed to interpret the model results. For the 
development of the study, 2,591 recordings from the Childhood 
Adenotonsillectomy Trial (CHAT) and University of Chicago 
(UofC) databases were used. The model achieved a 4-class 
Cohen's Kappa of 0.392 in CHAT and 0.346 in UofC. GradCAM 
highlighted bradycardia-tachycardia patterns, and PQ and QT 
segments, as well as identified U waves. Therefore, this 
approach may improve the diagnosis of pediatric OSA and 
provide new related cardiac information, thus encouraging the 
adoption of automated systems in clinical settings. 
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I. INTRODUCTION  
Pediatric obstructive sleep apnea (OSA) is a common 

respiratory disorder that leads to changes in the cardiovascular 
(CV) system and increases CV risk [1]. The standard 
diagnostic method, polysomnography (PSG),  is costly, 
complex, and uncomfortable, leading to under-diagnosis of 
children [1]. To address these complications, several studies 
have developed simplified strategies using a reduced number 
of PSG signals along with artificial intelligence techniques 
[1]. Focusing on pediatric OSA and cardiac signals, most 
studies have developed automated diagnostic alternatives 
using feature-engineering techniques [2]. Additionally, there 
is only one study that used a deep learning (DL) approach, 
which was based on a convolutional neural network (CNN) 
[3]. Despite the effectiveness shown in that study, CNNs are 
designed specifically to capture spatial features within the 
input data, disregarding the time dependencies present in 
sequences, such as those found in a nightly recording [4]. 
Another important limitation in all previous related literature 
is the lack of interpretability of the models used [5], thus 
hindering a higher acceptance of automatic models in clinical 
practice. 

For these reasons, this study aims to assess the 
effectiveness of an interpretable hybrid DL network to 
identify spatial patterns through a CNN and temporal 
dependencies with a transformer (TF). Electrocardiogram 
(ECG) signals fed the CNN-TF model to establish OSA 
severity and uncover relevant ECG patterns associated with 
the disease. 
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II. METHODS 

A. Subjects and signals preprocessing 
 Signals were acquired from the semipublic Childhood 
Adenotonsillectomy Trial (CHAT, n=1610) [6] and a private 
University of Chicago (UofC, n=981) databases [7]. CHAT 
was randomly partitioned into training (60%), validation 
(20%), and testing (20%) sets, while UofC was reserved for 
independent model evaluation (only test). The databases 
presented annotations according to OSA severity (no OSA: 
AHI<1 event/hour; mild OSA: AHI<5 e/h; moderate OSA: 
AHI<5 e/h; and severe OSA: AHI>10 e/h).  Table 1 presents 
clinical and demographic data from children. 

 The ECG-II lead from both databases underwent uniform 
preprocessing procedures. The signals were resampled at 100 
Hz and the continuous component was corrected by 
subtracting the signal mean within 30-second windows. 
Subsequently, a high-pass filter with a cut-off frequency of 0.5 
Hz was applied to mitigate noise. Finally, the amplitude of the 
signal was standardized using z-score normalization. 

B. Deep learning architecture 
A hybrid CNN-TF architecture was developed to capture 

both spatial structure and long-range relationships. The model 
received overnight ECG signals as input. The convolutional 
part corresponded to the previously presented CNN model [3]. 
Subsequently, TF was implemented using attentional 
mechanisms to capture dependencies and contextual 
information throughout the night sequence [8]. The output of 
the model was the apnea-hypopnea index (AHI) per subject. 

C. Model interpretability using GradCAM 
Gradient-weighted Class Activation Mapping 

(GradCAM) method was used as an eXplainable Artificial 
Intelligence (XAI) technique. Its function was to comprehend 
the intrinsic mechanisms of the model concerning the 
identification of apneic events and discerning cardiac patterns 
linked with pediatric OSA [9]. The GradCAM computation 
entailed using gradients derived from individual convolutional 
layers to compute layer-specific heatmaps. The final heatmap 
was obtained by averaging all the generated heatmaps [10]. 

III. RESULTS AND DISCUSSION 

A. Diagnostic capability 
Figure 1 shows the confusion matrices after the 

classification of the OSA severity. In the CHAT test set, the 
4-class metrics obtained were Acc4=61.2% and kappa=0.392, 
whereas, in the UofC test set, the model obtained Acc4=55.1% 

Table 1: Demographic and clinical data from CHAT and UofC datasets. 
CHAT UofC 

 Training  Validation  Test  Test  
Subjects  988  323  299  981  

Age (years) 7.00 [2.00] 7.00 [2.00] 6.90 [2.00] 6.0 [6.0] 
Males (%) 51.72 49.23  46.15 61.37 

BMI(kg/m2) 17.31[5.92] 17.12[6.25] 17.43[6.04] 18.02[5.86] 
AHI (e/h) 2.64[4.77]  2.45[4.77] 2.32 [5.11] 3.8[7.76] 
AHI≥1(e/h) 488  167  144  401  
AHI≥5(e/h) 159   44  49  178  
AHI≥10(e/h) 129  45  41  229  

 



and kappa=0.346. In addition, Table 2 shows that the highest 
Acc is obtained for identifying the most severe children in 
both databases. Our approach demonstrated higher diagnostic 
performance in detecting pediatric OSA compared to prior 
studies, especially in severe children [7].  

B. Identification of ECG patterns 
In Figure 2, GradCAM reveals heart rate alterations in the 

form of bradycardia-tachycardia patterns. In addition, 
heatmaps highlight U waves and PQ and QT segments. The 
CNN model utilizes information from bradycardia-
tachycardia patterns, consistent with the physiological 
response of the heart to apneic events [11]. The inclusion of 
P, Q, and T-wave data also aligns with the observed dispersion 
of the P-wave and QT interval in severe pediatric OSA 
patients, indicating potential consequences for the onset of 
atrial fibrillation and elevated risk of sudden death [12]. The 
U-wave presence may be associated with long QT syndrome 
and bradycardia, both clinical factors linked to pediatric OSA 
[11]. Thus, heatmaps revealed ECG patterns related to OSA 
and potential indicators of CV risk.  

IV. CONCLUSIONS  

 The integration of an ECG-interpretable CNN-TF model 
enables reliable diagnosis of pediatric OSA. In addition, 
GradCAM facilitates the identification of disease-related 
cardiac patterns. This approach may be a useful starting point 
when assessing the risk of CV comorbidities, a clinically 
relevant issue in pediatric OSA. In conclusion, this approach 
is an attractive alternative for PSG, as it offers a faster, more 
objective, and cost-effective method to diagnose OSA.  
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          Figure 1: Confusion matrices for the 4 OSA severities in the test sets.          Figure 2: GradCAM visualization of relevant ECG regions from nocturnal recordings.     
                            1: No OSA (AHI<1 e/h); 2: mild OSA (1≤AHI<5 e/h);                                                ↑HR and ↓HR: increase and decrease in heart rate.   
                  3: moderate OSA (5≤AHI<10 e/h); 4: severe OSA (AHI≥10 e/h).                                                                                          
   

Table 2: Diagnostic performance in the test sets.  
AHI 

cutoff 
Test 
set 

Se 
(%) 

Sp 
(%) 

PPV 
(%) 

NPV 
(%) LR+ LR- Acc 

(%) 

1 e/h CHAT 94.9 29.2 82.8 61.3 1.3 0.2 80.6 
UofC 95.7 14.5 83.9 41.7 1.1 0.3 81.4 

5 e/h CHAT 75.6 92.3 81.0 89.8 9.9 0.3 87.3 
UofC 73.5 84.7 77.3 81.8 4.8 0.3 80.0 

10 e/h CHAT 61.0 96.1 71.4 93.9 15.7 0.4 91.3 
UofC 59.4 97.3 87.2 88.7 22.3 0.4 88.5 

LR⁺ and LR⁻ (positive and negative likelihood ratio). 
 


